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An engineering structure in whose cavities one-dimensional longitudinal oscillations can arise may be considered as 

a long tube (length much greater than the diameter). In many cases, the energy source for these oscillations is the mechanical 

energy in an inhomogeneous flow incident at the inlet to the tube, and the oscillations occur because the flow in the tube 

becomes unstable under small perturbations. The inhomogeneity in the incident flow makes the flow at the inlet essentially other 

than one-dimensional. Numerical methods can be used [1] to obtain an exact solution for the stability of  such a flow under small 

perturbations, but as the oscillations within a long tube are one-dimensional, one can assume that these oscillations are 

determined by the parameters of the incident flow averaged over the tube cross section. The treatment becomes one- 

dimensional, which simplifies the stability calculation and gives a clearer picture of the physical essence of how the inhomo- 

geneous flow interacts with the oscillations in the tube. 

That approach has been used in [2, 3], where parts having complicated flow short by comparison with the length of 

the tube are considered as discontinuities or boundaries in a waveguide. The solutions on the two sides of a discontinuity are 

linked up by equations describing the flow in the short part. In the case considered here, there are two such boundaries: the 

inlet and the outlet. The solution in [2, 3] on the stability were attained with certain boundary conditions. However,  in general 

it remains uncertain which of the averaged parameters of the incident flow will govern the stability and for what values of these 

parameters the flow is unstable. These aspects are examined here. 

In a one-dimensional approximation, the motion of small perturbations is described by an equation system for isentropic 

flow as given for example in [2]: 

au ap By ap ~; ap 
~ +  ~ + M - ~ =  0 , ~  + ~ + M-~ = 0. (1) 

Here p = ~Sp/3,p*; v = ~v/a; ~ = x/L; r = ta/L; ~p and ~v are the perturbations in the pressure and velocity, p* is the static 

pressure for the unperturbed flow in the tube, a the speed of sound in the tube, L the tube length, t is the time, M the Mach 

number for the flow in the tube, x the coordinate along the tube with its origin at the left-hand end of the tube where the gas 

enters, and 3' = Cp/Cv the adiabatic parameter. 

If  we assume that the entropy perturbations are small by comparison with the pressure and velocity ones, the boundary 

conditions are put in the form p = Bv at ~ = 0 and p = Cv at ~ = 1, where B and C are real numbers, i .e. ,  p and v vary 

in time either in phase or in opposite phase. This is true if the flow outside the tube is greatly perturbed at a distance from the 

edges of the tube not more than the diameter. Then the flow at the ends of the tube can be taken as quasistationary [2, 3]. 

The solution to (1) is 

v = 0.StAo (exp,, 1 + exp,, 2) + Ap (exp~ 1 - exp.2)]expflr,  

p = 0.5[Ap (exl:Ml + exp'P2) + A (exptot - exl:~2)]expflr, (2) 

in which A v and Ap are the values of v and p for ~ = 0 and ~- = 0; ~ = v + i~; co = 2~rfL/a; f is the dimensional frequency 

9'1 = , ~o, = - ; M + I  M - I  

I - M  2 1 + H  B - C  
v -- ~ lnlT-=--ffl; o~ = (1 - M2)#k/2;  n = t - CB; 
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k =  0 , 2 , 4  .. . .  fo r (1  + H)/(1 - H) > 0 o r k =  1, 3 , 5  .. . .  for (1  + H ) / ( 1  - H )  < 0. 

It follows from the (2) solutions that the oscillations increase with time if ~ > 0, which occurs if one of the following 

two conditions is met: 

B C >  1 for B <  C, BC < 1 for B >  C. (3) 

The signs of B and C are incorporated. 

The physical meaning of  these conditions is that when the acoustic waves are reflected from the ends of  the tube, the 

attenuation at one end is more than balanced by the amplification on reflection from the other end. The coefficients B and C 

characterize the reflective of the tube ends [3]. 

In [2] there are examples of deriving B and C from the relationships for stationary isentropic flow at the ends of the 

tube. 

If  the ends of the tube are located in an unbounded space where there are no pressure pulsations, then p = 0 for ~ = 

0 and 1, and B = 0 and C = 0. Here the absolute value of  M is less than one. 

For a closed tube end (~ =-1),  v = 0 and C = Qo. 

For an outflow at the end of the tube (~ = 1) through a construction (where M 1 = 1), C = 2/M(gr - 1). 

For constant flow rate of the incoming gas through the critical section (where M 0 = 1), B = - 1/M. 

For constant total pressure in the inflowing gas [3], B = - M .  

The condition for complete absorption of  the wave at the end of the tube (e.g.,  cotton wool is placed at the end) is 

C =  l f o r ~ = l .  

We derive B for an inhomogeneous incident flow at the inlet (~ = 0). The one-dimensional oscillations interact with 

the flow averaged over the cross section. We assume that vortices within the tube caused by inhomogeneity in the incoming 

gas die away at a distance from the inlet approximately equal to the diameter. Then for a long tube one can assume that the 

flow is homogeneous in the inlet section and that the flow parameters are qual to the values averaged over the cross section. 

Let the stagnation temperature in the incident flow be the same everywhere, which applies, for example, if the flow 

inhomogeneity is obtained by placing local resistances in a homogeneous flow or is due to local shock waves in supersonic 

flow. Then the incident flow has a distribution for the total head. For a stationary adiabatic flow with a given inhomogeneity 

in the unperturbed flow, one takes the total head for the incoming gas averaged over the inlet section Pot as a function of only 

one parameter (e.g.,  incoming gas flow rate Qt or the Mach number in the tube). 

This can be seen if we express Qt and Pot in terms of the parameters of the unperturbed flow in that flow tube from 

which the gas enters the tube. Figure 1 shows dotted the flow tube from which the gas enters the tube during the oscillations 

in the entry phase. The flow in section 1 of the flow tube is not perturbed during the oscillations. Section 2 in the flow tube 

coincides with the inlet section of the tube. If we neglect the losses in total head on inlet, one can calculate Qt and Pot in terms 

of the flow parameters in the unperturbed section 1 from 

q z~ rl 

o o axo  o 

Here P0, P, and u x are the total head, the density, and the velocity, which are dependent on the radial coordinate r, with 5r 

the increment in r, ot azimuthal angle, and r 1 the radius of the current tube in the unperturbed section. The first expressions 

shows that if Qt is increased, then r 1 increases, since the integrand expression is unaltered (the flow is not perturbed). This 

means that additional current lines arise as the flowrate increases, i .e.,  gas enters the tube from aflow tube in the unperturbed 

flow that has an increasing diameter. As r 1 is a function only of  Qt, and the second expression implies that Pot is a function 
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only of r I and Qt, then Pot is a function only of Qt. When the inhomogeneous flow enters the tube and during the mixing, the 

stagnation temperature is preserved, since 

T o = r ( l +  y - I  2 M2)' (4) 

in which T O is the stagnation temperature in the unperturbed flow in section 1, while T and M are the temperature and Mach 
number in the tube in section 2. Formulas for the averaged flow apply for section 2: 

Po~ = P* (I + y - I M2)~/(~_l) ' a2 = y p . / p .  = ~/RT. (5) 
2 

Here a, p*, and p* are the speed of sound, the pressure, and the density in section 2, while R is the gas constant. Under these 

flow conditions, T O = const, while Pot is variable. We use these formulas to show that Pot is a single-valued function of M. 
The flow rate in the tube with cross section S can be represented by Qt = Map*S = 3,MSp*/a, and as shown above, Qt is 

dependent only on Pot, while p* from (5) is dependent on Pot and M. For T O = const, (4) and (5) give the speed of sound as 
dependent only on M, so Pot is a single-valued function of M, and in general we can write Pot = F(M), so for small changes 

in the parameters we have 6po t = 0P0t/0M 6M, which is a boundary condition at the open end of the tube with the flow 
entering. For small changes in the paarameters, formula (5) gives 8a/a = 8T/2T. The formula for the stagnation temperature 

(4) with T O = const gives 

t ~ T / T  = - ( y  - 1)Md~M/(1 + ~ - M 2 ) ,  

and (5) implies that 

d~p~ = bp* (1 +~ '  2---'~lM 2)r/(r- t) + p*dJ [(1 + Y  -12 M2 ) r / ( ' -  1,] 

3M = ~ o / a  - M ~ a / a .  

Substitution for 6po t and6M in the boundary condition and transformation given p/v = B, where 

1 ~ , -  1 M2 ~ -l/~y-l)apo, B = - - ( 1  + - M. (6) 
yp* 2 / 0M 

We now derive the boundary condition at the inlet (~ = 0) with stationary flow from the tube in the opposite direction. 

In that case, the dimensionless velocity M in the tube is negative, since the gas runs out in the opposite sense to the positive 

direction of the x axis. The static pressure p* at the end of the tube is determined by the flow pattern at the end. This pattern 

is dependent on the structure of the incident unperturbed flow and the mode of flow from the tube. As the flow conditions in 

the tube are unambiguously defined by specifying three parameters (Pot, M, To), we have p* = Fl(Pot, To, M). With an 

unaltered structure for the unperturbed flow and T o = const in the tube, we have p* = F2(Po t, M). The Pot, P*, and M within 
the tube are related by (5). We therefore eliminate Pot from the last equation and get in general form p* = F3(M), so any 
change in the Math number of  the outflow from the tube may substantially affect the mode of flow at the inlet, and thus may 
alter p*. For small changes in the parameters we have 8p* = 3p*/OM 6M. This is the boundary condition for flow from the 

tube in the opposite sense to the incident flow. As 6M = [1 + (3' - 1)/2 M2]v, and 8p*/3'p* = p, the boundary condition gives 

B - - - -  (1 + M2 ap* ~,p, ~ ' .  (7) 

If  there is no flow in the tube, i.e., M = 0 (e.g., the rear end is sealed), then during the oscillations there is a phase 
of  inflow into the tube and outflow from it. We find the value of B for this case. Let the velocity at the inlet to the tube 

oscillate on a low satisfying system (1): v = vo/aexpv*tsin~*t (v* is a dimensional coefficient and o:* the dimensional angular 
frequency). Negative values of v correspond to outflow and positive ones to inflow. The change in static pressure takes the 

form p = Bi v on the basis of  the boundary condition p = By. The coefficient B i = B' in accordance with (6) for a positive 
value of sin~*t, while B i = B" in accordance with (7) for a negative value, i.e., on outflow from the tube. The time junction 
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Fig. 2 

Fig. 3 

Bisin~*t is a periodic curve unsymmetrical with respect to the time axis. The negative and positive half-periods have unequal 

maximal deviations B' and B". Such a function can be expanded as a Fourier series. In the expansion there is a term having 

the frequency o~* of the velocity oscillation. Then that component in the expansion of the pressure pulsations in the inlet section 

may have certain phase relationships to the harmonic oscillations in the tube and either supply them with energy or damp them. 

That term has the form Bosinco*t, where B 0 = 0.5(B' + B"). Then the required boundary condition is p = BoY, when a gas 
flow is incident on.a tube without through flow (M = 0). Here from (6) and (7) 

0M) (8) 

We now consider how various boundary conditions affect the possibility of oscillations. 

If a wave absorber is placed at the end of  the tube, then from (3) with C = 1 we get B < 1 and B > 1, which is 

impossible for any value of B, so one-dimensional oscillations are impossible with any flow at the inlet. This is confirmed by 

experiment [5]. 

If  M 1 = 1 in the hole at the end of the tube, then C = 2/('), - 1)M. With an inhomogeneous flow incident at the inlet, 

B is derived from (6). When the total head of the incoming gas decreases as the inlet flow velocity increases, OPotlOM < O, 
and if here 3, > 1 and M < 1, then conditions (3) are not met and oscillations are impossible. When the total head increases 

with the incoming velocity, 0Pot/M > 0, and for 3, > 1 and M < 1, one of the pair of conditions (3) is met if 

2_ apo, y - -  1 2 l / ( r - I ~  
. M (i + - 7 - - M  ) . (9) 

7P* aM 

We see from (9) that there is a threshold value of the positive quantity 0Pot/0M , above which oscillations arise. The higher 

M in the tube, the larger OP0t/0M should be for oscillations to arise. 

It is well known that oscillations (pumping in the air inlets of aviation engines) occur in the zone where the total head 

increases in the flow characteristic of the air intake (0Pot/0Qt > 0) [4]. 

I f  the rear end of  the tube is sealed (M = 0, C = co), the conditions (3) become BC > 1, B < co, i.e., B > 0. We 

use (8) to obtain the excitation condition for such a semi-closed tube: 

aP~ + aP---L > O. (10) 
aM aM 

Then (10) implies that if oscillations are to arise here it is necessary for the total head averaged over the inlet section to increase 

with the inlet velocity. And when there is gas outflow, the static pressure in the inlet section should decrease as the outlet flow 

velocity increases for this purpose (the Math number of the outflow is negative). We see from (10) that if the signs of the 

derivatives differ, oscillations arise when the absolute value of the positive derivative is larger. 

We use (1(3) for simple cases to estimate without calculation the effects on the flow stability in the tube from the 

incident flow velocity profile. Here significance attaches to the velocity distribution in the inlet section of  distances from the 

center of that section of the order of and less than the internal radius of  the tube r r The velocity profile may be produced by 
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Fig. 4 Fig. 5 

devices close to the inlet section. The wall construction at the tube inlet affects the flow conditions and thus the static pressure 

at the tube end. 

Consider a long tube with closed end having a thin wall and straight end section, on which is incident a subsonic flow 

having axisymmetric velocity distribution near the inlet section (Fig. 1). The total head in the tube P0m (pressure in the bottom 

part) according to our experiments is close to the total head on the current line that has the maximum total head in the area 

are the end of the tube. This occurs because the flow line with the maximum total head fills the volume of the tube, so a flow 

line with less head cannot enter the tube. Instead, such flow lines are sent back by the reverse flow from the tube. The three- 

dimensional flow within the tube at the inlet can be neglected if the tube is long. The intake phase is taken as occurring at 

moments when the flow of  incoming gas in the inlet section exceeds the flow of outgoing gas. This difference is the flow rate 

for the incoming gas and determines the Mach number within the tube. 

Physical considerations imply that the sign of 0P0t/0M coincides with that of [po(rt) - P0m], where po(rt) is the total 
head of the current line incident on the thin wall of the tube when there are no pulsations in the tube. In fact, if the gas begins 

to flow into the tube, i.e., the inflow velocity increases from zero, then the peripheral current line with coordinate r t is 

displaced towards the tube axis and enters the tube. Here if Po(rt) > P0m, Pot is increased (Clpot/aM > 0), while if (Po(rt) < 

P0m, Pot is reduced, i.e., aPot/0M < 0. 
We thus have a peripheral-maximum condition for the axisymmetric case: oscillations arise in this tube if the velocity 

of the incident flow near the inner wall of the tube is higher than in the inlet section and increases in the radial direction. 

Oscillations do not arise for the velocity shown in Fig. 1 because 0P0t/0M < 0 in (8) in accordance with the peripheral- 

maximum condition. Also, 0p*/0M < 0, the latter following from the fact that the static pressure at the tube inlet is equal to 

the total head Po(rt), i.e., the stagnation pressure at the end of the tube wall. When outflow starts, the current line for the 

incident jet is displaced radially, and higher-pressure stream lines begin to be retarded at the end, which lie closer to the tube 

axis. Then as the outflow velocity increases, the static pressure at the inlet begins to rise (6p* > 0), and 6M < 0, since the 

outflow velocity is negative. 

Such arguments suggest that oscillations occur when a flow is incident on the tube with the velocity profile shown in 

Fig. 2. The peripheral-maximum condition here gives 3P0t/0M > 0, 0p*/0M > 0. so (10) is met. Such oscillations have been 

demonstrated by numerical calculations [1] and by experiment [5, 6]. 

Oscillations arise in the case shown in Fig. 3a because the velocity distribution in the inlet section does not differ from 

that in Fig. 2. Here the peripheral-maximum condition is met. The velocity profile is the same in Fig. 3b, but the tube diameter 

is larger than in Fig. 3a, and oscillations do not occur, since the peripheral maximum conditions is not met. 

That condition is applicable to a tube without through flow (M = 0), e.g., in the situation shown in Fig. 3b, one may 

make a hole in the bottom part of the tube, in which case a through flow is formed (M > 0). Then the averaged total head 

in the tube Pot' will not always be equal to the maximum on the velocity profile P0m- If the constant gas flow rate through the 
tube exceeds the total flow rate for the streamers having total head P0m, then lower-pressure streamlines enter the tube. 

Therefore, we have Pot' < P0m" When the velocity pulsations cause the inflow velocity to exceed the constant value in the tube, 

one gets peripheral streamlines having total head po(rt) < P0m, but they may have a total head higher than Pot'- Then [P0(rt) 

- Pot'] > 0, and therefore 0Pot/0M > 0. According to (9), oscillations become possible for a certain value clP0t/0M > 0. 
Then if the velocity profile has the form shown in Fig. 3b, oscillations in principle can arise if there is through flow in the tube. 

With an arbitrary inlet of velocity profile for a tube without through flow, the sign of  tgPot/OM is determined by that 

of [15o(rt) - P0m] (Po(rt) is the total head averaged over the length of the generator for the internal tube wall). When there is 

flow into the tube, streamlines with coordinate r t arise, which in general have differing total heads. Then the averaged quantity 

~o(rt) determines the sign of OPot/0M and oscillations are possible. 

The examples given below show that poskive 0pot/0M at the inlet (and thus oscillations) can be obtained with special 

constructions at the inlet. Figure 4 shows a tube whose end is cut obliquely, and on which there is incident homogeneous flow. 

This can also be a tube cut straight across but set at an angle to the incident flow. We know [7] that oscillations arise in a tube 
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for a certain range of  angles. We can show that here the condition ap~ _ P~ - P---------~ > 0 may be obeyed, where Pot is the 
OM AM 

total head in the tube in the absence of oscillations, with Pot the averaged total head of the gas at the inlet in inflow phase at 

the start of oscillation, while AM is the increment in the Mach number. 

In fact, the pressure Pot* in a half-closed tube with oblique end is dependent on the inclination angle and is lower than 

the total head Po in the incident flow. This dependence is usually employed in measurements to determine the flow direction 

[8]. Figure 4 shows that there is a detached flow at the inlet of the tube. The current lines in the incident flow envelop the tube 

and may be retarded at the end of the wall. At the start of the inlet phase, the retarded current lines with coordinate r t enter 

the tube. These lines have a total head PO > Pot , so the averaged total head for the incoming gas Pot will be greater than Pot , 

and hence aPot/aM > 0. When the tube is cut almost straight across, POt* is close to P0 and P0t = Po. Then as ap.___~ _ Po~ - P_ . . . . .  ~ -- 0, 
aM AM 

oscillations are absent. If  the cutting angle for the tube is too small, the current lines remotely envelop the detachment region 

and do not fall on the end of  the tube wall. Therefore, for a small inflow velocity they do not enter the tube. Consequently, 

the total head on inlet varies only slightly (130t = Pot = const, 0P0t/aM = 0), and there are no oscillations. 
Figure 5 shown a scheme for a whistle. A gas jet 2 enters through the slot 1, and falls on the wedge 3. If  the distance 

between the edge of the slot and the sharp edge of  the wedge is comparable with the length of  the tube 4, then wave (bending) 

processes in the jet are important in the oscillations. 

The mechanism has been described in [9]. If  the length of the resonant tube is greater than its height and the distance 

between the edge of. the slot and the sharp edge of the wedge is much less than the length of the tube, the flow oscillates as 

a pendulum (with a single phase), and then the above method is permissible for evaluating the excitation conditions. For 

example, if the sharp edge is in the middle of the jet, the total pressure in the tube will be equal to that in the jet, i.e., POt* 
= Po, so if there is additional flow inward due to the pulsations, additional flow lines enter with the same total head, and 

6Pot/6M = 0, and so oscillations are impossible with that position for the wedge. 

If the sharp edge lies somewhat lower than the boundary of  the jet, so that the jet with total head Po does not enter the 

tube, the pressure in the tube will be equal to that near the sharp edge of the wedge Pot = XP0, where ), < 1 is the recovery 

coefficient of  the total head for the jet at the wedge. 
If  the extreme streamlines in the jet are near the sharp edge, they are deflected downwards for small pulsations in the 

m 

aPo~ Po~ - P~ p0(l - 4) 
inflow phase and enter the tube. Then the total head for the inflowing gas Pot is Po, so 0M -- A----M-- - A ~  > 0, and 

oscillations occur. If  the sharp edge is below the jet and far from its edge, the jet does not enter the tube for small oscillations, 

and the pressure in the tube does not alter (aP0t/aM = 0), and no oscillations occur. 
This shows that researching a physical model for oscillations in a long tube when a flow strikes the inlet amounts to 

studying the features of the stationary flow at the irdet, which increases the total head in the tube as the inflow rate increases. 

For a tube without through flow or with reverse flow, the research amounts to examining the reasons for the fall in static 

pressure at the end of the tube when the outflow speed from the tube in opposition to the inflow increases. The processes 

responsible for the increase in oscillation amplitude within a long tube are physically of the same type, and a description of 

them can be found in [2, 3, 5]. 
We are indebted to N. F. Vorob'ev for advice and valuable comments on this paper. 
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